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Esterification is one of the most fundamental and important Scheme 1

reactions in organic synthegiglthough several methods have been H Ho H
exploited and developédthe search for new environmentally — — |7" Prs = |7" B2 koBut, 32°C = |}PBu'z
friendly, atom-efficient methods which avoid the use of large \_ S R—¢© C,{CR“—CO — ! N—rui—co
amounts of condensing reagents and activators has attracted much \-ppr, NEt, “HOBu, KA NEt,
interes® An attractive approach is the direct catalytic transformation 1 a 2 a

of alcohols to esters, without the use of the corresponding acid or o Hzl T H,
acid-derivative. In particular, dehydrogenative coupling of alcohols  orrEP of 2 (50% probability): K o S H

to esters with the evolution of Hs an attractive goal. As opposed  Rul-N12.260(2), Rul-N2 2.103Q2), c7¢¢” > —PBu,
e L. . . . Rul-P1 2.273(1),Rul-C8 1.834(3), a, c1s /=

to the normal esterification of an acid and alcohol, in which an  N2-Ru1-C8 172.84(9), 20 \ | KM 574 ,N—/Ru—co
iari ; ; N2-Rul-H1ru 86.3(9), S 3 ° €

equilibrium mixture is generated, the evolved hydrogen (valuable ¢ pur iry 173.79), O Nbt,

by itself) would shift the equilibrium to completion (eq 1). However  Ni-Ru1-P1159.01().

relevant reports are limited to a few nonselective heterogeneous

reactiond or homogeneous systems which utilize sacrificial hy- Table 1. Dehydrogenation of Primary Alcohols to Esters and H,

drogen acceptors® In general, homogeneous systems capable of Catalyzed by Complexes 1, 2, and 32

thermally catalyzing acceptorless dehydrogenation of alcohols are Ko femp.  fme  conv. yield %) yield (%)

relatively raret6-11 Moreover, most of these systems also require entry cat. (equiv)  alcohol °C) () (%) (ester)  (aldehyde)

an additional acid or base and are not effective for dehydrogenation 1 1 1 1-hexanol 157 24 706  67.2 2.8
of primary mono-alcohols to the corresponding estémsith the 2 1 0 l-EexanO: 157 24 0 0 0
i . 3 2 1 1-hexano 157 24 90.4 90 0.3
ex_cep_tlon of two systems, reported by Murahésimd by Shvét 4 5 o Lhexanol 157 24 o o o
(vide infra). We reported recently the Ru-catalyzed acceptorless s 2 1 1-hexanol 115 24 95 94.5 0.1
dehydrogenation of secondary alcohols to ketdA®ge now report 6 2 1 l-butanol 117 72 925 915 1
the design of novel ruthenium complexes which efficiently and 7 2 1 benzyl 118 72 100 995 0
selectively catalyze dehydrogenation of primary alcohols to esters 8 3 0 l-butanol 117 5 91 90 0.5
and H in high turnover numbers under relatively mild, neutral 9 3 0  lLhexanol 157 25 915 914 01
diti 10 3 0  l-hexanol 115 6 99 99 0
conauons. 1 3 0  benzyl 119 4 932 921 1
alcohol
catalystA
2RCH,OH R=alkyl aryl’ RCQO,CH,R + 2H, 1) 20.01 mmol KOH, 0.01 mmol catalyst, and 10 mmol alcohol were heated
' neat under Ar flow? 2 mL of toluene was added, and the solution was
refluxed.

Addition of the ligandPr-PNP (2,6-bis-(diso-propylphos-
phinomethyl)pyridine) to RUuHCI(PRJ3(CO) in THF resulted in
formation of the fully characterized [RuUH@-PNP)(CO)}* 1 in
91% yield (Scheme 1$P{*H} NMR of 1 shows a singlet at 73.6

108.7 ppm, while théH NMR of 2 exhibits the hydride ligand as
a doublet at-15.25 ppm {py = 27.5 Hz). A single-crystal X-ray
diffraction study of2 (Scheme 1) indicates a distorted octahedral
geometry around the Ru(ll) center, with the CO ligand coordinated

ppm, while the hydride ligand exhibits a triplet &014.59 ppm trans to the pyridinic nitrogen atom and the hydride trans to the
(Jpn = 18.0 Hz) in the!'H NMR. Complex1 catalyzes alcohol chloride pynidinic nitrog ydn

dehydrogenative esterification in the presence of base. Thus, heating Complex2 in the presence of 1 equiv of base is an efficient
. S 0 o

a SOIE“O“ containing 0.1 mol % (each) band KOH |n01 hexanol_ dehydrogenative esterification catalyst, exhibiting superior activity

(157°C) under argon flow resulted after 24 h in 67.2% conversion relative to that ofL. Thus, upon heating a 0.1 mol % solution of

of the alcohol to hexyl hexanoate anc.HA small amour_lt of complex2 with KOH (1 equiv relative to Ru) in neat 1-hexanol at

n-hexanal was also formed (Table 1, entry 1). No reaction took 157°C under argon for 24 h, 91.5% hexyl hexanoate was formed

pIaAf:'e n abts_ence OT a I:t)f]\se. talvti tivity it fint £ accompanied by a trace of 1-hexanal (entry 3). The temperature
iming at improving the catalytic activity, 1t was ot INterestio .o, e |owered to 11%5C in refluxing toluene, resulting in 94.5%

S C
us to prepare a complex analogous to the coordinatively saturatedyield (945 turnovers) to the ester after the same period (entry 5).

L b“‘;ta‘."”%‘?‘ pgo(;;m'?”é I)hemllai)_lle” afrgnﬁ'(‘;?r(r:ng Conl;t)_:ﬁx No reaction took place in the absence of base. Other alcohols react
was obtainedn 6 yield by reaction of RUHCI(CO)(BRgiwi similarly. Thus, upon heating 1-butanol with 0.1 mol %2&nd

tr;e new “%r?nld P'\CliN éf-sggelr;bu'\tl);\lllpgoip;mr?methyI)TG-cl;Ilftht- KOH (1 equiv) at 117°C for 72 h, butyl butyrate was formed in
ylaminomethyl)pyridiné:* #P{*H} of = shows a singiet a 91.5% vyield (entry 6). With benzyl alcohol at 128 in toluene,

* Department of Organic Chemistry. reaction follow-up indicated that 91% benzyl benzoate was formed
*Unit of Chemical Research Support. after 6 h, with TOF reaching 333 hat the level of 50% benzyl
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benzoaté* Formation of the ester became very slow after 6 h, Although further studies are required, a novel mechanism

perhaps because of retardation of the reaction by the high esterinvolving aromatization/dearomatization and amine arm hemilability

concentration. However, almost quantitative formation of benzyl seems plausible. Upon reaction®With the alcohol, an aromatic,

benzoate was obtained (entry 7). coordinatively saturated alkoxy hydride complex may be generated.
To further improve the reaction, we aimed at totally eliminating Amine “arm” opening would enable th&H elimination process,

the need for a base. A possible role of the base is deprotonation offollowed by aldehyde elimination to give compléx Dihydrogen

2 to the corresponding Ru(0) complex. Exploring this possibility, loss from4 regenerate8, as described above. Mechanistic studies

2 was treated with 1 equiv of KOBwat —32 °C. Interestingly, are now underway.

deprotonation of the benzylic phosphine “arm”, rather then the In conclusion, new Ru(ll) hydride complexes based on electron-

hydride ligand, took place, resulting in the brown-red Ru(ll) rich PNP and PNN ligands catalyze alcohol dehydrogenation to

complex3in 89% vyield.3'P{1H} NMR of 3 shows a singlet at  esters. Catalyst design has resulted in the novel conglefich

94.7 ppm, representing an upfield shift of 14 ppm relative to is an outstanding catalyst for the acceptorless dehydrogenation of

complex2. The hydride ligand gives rise to a doublet-a26.45 primary alcohols to esters under mild, neutral conditions, providing
ppm Jpy = 25.5 Hz) in'H NMR. A one-proton singlet at 3.66  an environmentally benign method for the direct synthesis of esters
ppm inH NMR and a doublet at 65.2%4c = 50.3 Hz) in13C- from alcohols.
{*H} NMR indicate formation of an anionic PNN system. The CO ] ] )
ligand absorbs at 1899 crhin the IR spectrum. Apknowledgmgnt. Support of this project by the German-lsraell
Transition-metal complexes with an anionic PNP ligand I?ropct Cooperation (DIP-G.7.1) and by the Israel Science Founda-
(CsHaN(CHPPh)(CH,PPh)) were reporteds tion is gratefully acknowledged. J.Z. thanks the Aron Zandman
In an unusual observation, reaction of compBwith excess Foundation for a Postdoctoral Fellowship. D.M. is the Israel Matz
dihydrogen resulted in aromatization, yielding thens-dihydride Professor of Organic Chemistry.

complex4, which was fully characterize. 31P{1H} NMR of 4

shows asinglet at 124.9 ppm, downfield shifted by 30 ppm relative characterization of the PNN ligand and complekes, procedure for

to complex3. The two magnetically equivalent hydride ligands give catalytic reactions. X-ray data for compléin CIF format. This

rise to a doublet at-4.06 ppm e = 17.0 Hz) in*H NMR. A material is available free of charge via the Internet at http:/pubs.acs.org.
doublet (2H) at 3.12 ppmJéy = 8.5 Hz) and a singlet (2H) at
3.83 ppm for the two benzylic methylene groups!t NMR,
respectively, indicate the presence of a regular aromatic PNN
system. Significantly4 slowly loses H at room temperature to @ liggOQC_kb%-6%%?1'3%?2Eg:geegrt%egr;(iecir;rransformationS/CH: New York,
regenerate compleX (Scheme 1). (2) Ishihara, K.; Ohara, S.; Yamamoto, Stience00Q 290, 1140. (b) Corma,
Complex3 is the best homogeneous catalyst for acceptorless A.; Nemeth, L. T.; Renz, M.; Valencia, ature 2001, 412, 423. (c)
dehydrogenative esterification of alcohols. When used as catalyst Hoydonckx, H. E.; De Vos, D. E.; Chavan, S.; Jacobs, Pldp. Catalysis
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